
International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014 459
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Converting Existing LCD TV to Smart TV using
BeagleBoard XM

Sujith Kumar .S, Dr. Ramachandra .A .C

Abstract— Earlier days, in LCD TV we were able to watch only channels and sometimes built in games. If we do text messaging, online
gaming, MMS, video charting, Old persons who does not know how to operate computer they can directly use this application to perform
video conference with their far relatives by simply switch on the device etc... In separate devices it will be wastage of area, power, time,
and money. So by keeping this issue we have developed a solution in this paper. The aim of this paper is to Converting Existing LCD TV to
Smart TV Using BeagleBoard XM. This processor operating at frequency of 1GHz in order to improve the execution speed. ARM Cortex A8
processor is available in BeagleBoard XM in market. Beagle Board XM is designed specifically to address the Open Source Community.
Hence its hardware design and details about the processor are completely available in websites. It offers high re configurability and
portability. In this paper host operating system is Linux, target operating system is android, system software using c language and
application software is developed using java language. The application developed in this paper is contributed as open source code to the
society. In future every common people relay on Smart TV with android.

Index Terms— Android, BeagleBoard XM, Linux, Smart TV.

—————————— ——————————

1 INTRODUCTION

 Smart TV systems includes features such as MMS, messag-
ing, video conference, watching online video channels, google
talk, browsing websites and also used as touch screen devices
etc…
 Android is run by company called Google.inc and it be-
came more popular now a days. In recent years android be-
came more efficient target operating because it is very to build
android applications as compared to Linux operating. An-
droid is open source so source code is available and source
code for android application also available. These open stand-
ards are developed by open handset alliance (OHA) and ap-
plication receives regular update from the android cloud. An-
droid features are Messaging, Web browser, Voice based fea-
ture, Multi-touch, Bluetooth, External storage, Multitasking
etc.
 BeagleBoard XM is designed specifically to address the
Open Source Community. It is a single board fan less comput-
er with all interfacing ports as similar to our personal comput-
er. It is a more supporting open source device for all open
source code to build an android application. We customise
android O.S for BeagleBoard XM and application software
developed using java language for BeagleBoard XM. By utiliz-
ing standard interfaces, the BeagleBoard is highly extensible to
add many features and interfaces. It is not intended for use in
end products. All of the design information is freely available

and can be used as the basis for a product. This is readily
available in market for product development purpose.
 In this paper, few of the smart TV applications such as
watching online video channels and audio player are imple-
mented. In LCD we can able to watch all online video chan-
nels.

2 EXISTING MODEL
 The existing Smart TV system can perform audio player
and online video channel watching. This model uses open
source hardware component called BeagleBoard XM and open
source operating system called Android and Linux. LCD with
DVI port can use for display purpose.

2.1 Problem Defnition
 At present the LCD T.V are used to watch only channels
and sometimes built in games. The user can able to access all
features in smart TV as like a smart phone and tablet. Whereas
the smart TV provides following features are, Watching TV
channels, Playing offline and online games, watching videos
from YouTube, Video conference through applications like
Skype, Connecting to social networking websites like Face
book etc. If we use individual devices for each and every ap-
plication in different devices, power, time, cost becomes more.
Power, cost, area, time are more important for developing end
product and also very simple to use. In order to overcome this
problem we are implementing most of the features in single
device.

3 PROPOSED WORK
 The proposed work in this paper is using LCD TV as
smart TV by using BeagleBoard XM with android operating
system as taget operating system and Linux as host operating

————————————————
• Author Sujith Kumar .S is currently pursuing masters degree program in

VLSI desing and Embedded Systems in Visvesvaraya technological Uni-
versity, India, PH- 91 7259318108. E-mail: sujithkumar969@gmail.com

• Co-Author Dr. Ramachandra .A .C is currently head of the department in
Electronics and Communication Engineering at Alpha College of Engineer-
ing, India, PH- 91 9448201096. E-mail: ramachandra.ace@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014 460
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

system. BeagleBoard XM,USB, mouse, USB keyboard, LCD TV
with DVI port or monitor with HDMI/DVI, USB hub where
USB of mouse and keyboard are connect, power adopter to
supply 5 volts to the BeagleBoard XM, DVI to HDMI convert-
ing cable, there are 2 audio ports to connect the speakers or
head phones. The android operating system and application
software for our project are stored in the memory devices such
as micro SD or HDD this is in turn connected to BeagleBoard
XM as shown in below figure 1.

 Fig. 1: Block diagram of smart TV system

 Fig. 2: Overall hardware connections to BeagleBoard XM
To develop android application for Smart TV system,
Software requirements are,

• Eclipse.
• Java runtime environment (JRE).
• Android development tool (ADT).
• Android source code.Eclipse.
• Ubuntu 12.04 as a Host Operating System.
• Android Jelly Bean 4.2 as a Target Operating System.

Hardware requirements are,
• BeagleBoard XM (target machine).
• LCD with DVI port and audio speakers.

• Personal computer (host machine).
• Keyboard and Mouse.
• Stroage device (micro SD).

Board bring up: - It means giving a life to BeagleBoard XM
which means android operating system is ported to target de-
vice after completion of following phases of works.

• To build boot loader: - It is welcome display which
shows logo, name of company etc...

• To build kernel:- Kernel is a computer program that
manages the inputs/outputs request from application
software and translates to the data processing instruc-
tion for central processing unit and other computer
devices.

• To build root file system:- The root file system is
the file system that is contained on the
same partition on which the root directory is located,
and it is the file system on which all the other file sys-
tems are mounted (i.e., logically attached to the sys-
tem) as the system is booted up (i.e., started up).

Booting sequence in Beagle Board XM,
ROM Code: Tries to find valid bootstrap image from various
storage sources and load it into SRAM or RAM (RAM can be
initialised by ROM code through a configuration header). Size
limited to <64KB. No user interaction possible.
X-Loader: Runs from SRAM. Initialises the DRAM, NAND or
MMC controller, and loads the secondary bootloader into
RAM and starts it. This file is called MLO.
U-Boot: Runs from RAM. Initialises some other hardware de-
vices (network, USB, etc...). Loads the kernel image from stor-
age or network to RAM and starts it. Shell with commands
provided. This file is called u-boot.bin.
Linux Kernel: Runs from RAM. Takes over the system com-
pletely (boot loaders no longer exists).

 ROM code
Stored in ROM in the
CPU

 X-Loader
 Stored in NAND or SD
 runs from SRAM

 U-Boot
 Stored in NAND or SD
 runs from SDRAM

 Linux Kernel
 Stored in NAND, SD,
network runs from

IJSER

http://www.ijser.org/
http://www.linfo.org/partition.html
http://www.linfo.org/root_directory.html
http://www.linfo.org/boot.html

International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014 461
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

 Fig. 3: Booting sequence in Beagle Board XM
Android Boot Animation,
The Android boot animation is contained within an uncom-
pressed zip file called bootanimation.zip that can be found in
the media folder of the system partition i.e. /system/media on
the internal memory of the device. This single file contains all
the information required to play the boot animation, and is
loaded automatically when the device boots. The Android
boot animation might appear to be in a video format.
Inside the Bootanimation.Zip File we have,

• A desc.txt file
• A part0 folder
• More part1, part2 etc. folders (May or may not be pre-

sent)
The animation is played simply by displaying the images in a
sequence, and the text file defines how they are to be played.
In essence, first the PNG or jpg files in the part0 folder are dis-
played one after the other and afterwards, those in the part1
file if it exists are displayed, again one after the other, and so
on. All of this is defined in the desc.txt file.
The folders:-
These contain PNG images named in numbers, starting from
something like 0000.jpg or 00001.jpg and proceeding with in-
crements of 1. There has to be at least one folder, and there is
no known upper limit to the number of folders.
The desc.txt file:-
This file defines how the images in the folder(s) are displayed
during the boot animation, in the following format:
Width Height Frame-rate
P Loop Pause Folder1
P Loop Pause Folder2
An example of a desc.txt file is:-
480 800 30
p 1 0 part0
p 0 0 part1

• In the first line, 480 and 800 define the width and
height of the boot animation in pixels for this exam-
ple. This must be the same as the screen resolution of
your device for the boot animation to properly play in
full screen. 30 is the frame rate in fps (frames per se-
cond) i.e. number of images to display per second.

• The second and third lines have a same format, start
with p, which stands for a part of the animation and
end in part0 or part1, which denotes the folder in
which the images for that part are present.

• The number after ‘p’ defines how many times this
part will loop (repeat playback) before switching to
the next part (if present). Specifying 0 would make
the part loop indefinitely till the phone has fully boot-
ed.

• The next number is for the pause, and is expressed in
the number of frames, which can be translated into
time by dividing it by the frame rate. A pause of 15
for example, would mean pausing for the time it takes
15 frames to play and since the frame rate is 30 frames

per second, 15 frames would take half a second.
• The boot animation will play at a resolution of 480 by

800 pixels, at a frame rate of 30 fps, starting with the
contents of part0 folder and after playing them in one
loop, switching to contents of part1 folder and play-
ing them continuously till the device fully boots.

• Now select everything inside the bootanimation fold-
er and zip them into a new uncompressed zip archive
using your favorite compression utility. Here is the
method using 7-zip:

1. Select everything inside the bootanimation folder.
2. Right-click on any of the selected files/folders and

from the 7-zip menu, select ‘Add to archive’.
3. Use ‘zip’ as the archive format and ‘Store’ as the

compression level, and click OK. This will create a file
called bootanimation.zip in the same folder.

Rooted/Unrootedevices: - Enter these commands:
• adb pull /data/local/bootanimation.zip c:\
• adb push bootanimation.zip /data/local/

 Fig. 4: Boot animation window in LCD display.
The above boot animation window is shown in display device.
Similarly with same instruction procedure we can do it for any
android devices or Beagle Board XM with LCD.
Commands to build the above stages are shown below.

• Tool chain setup:
To setup tool chain setup the tool chain path to point
/home/pusstak/training/toolchain/arm-2009q1/bin. Execute
the below command in command window.
$ export PATH=/home/Pusstak/Training/toolchain/arm-
2009q1/bin: $PATH

• Build X-Loader (MLO file):
To create x-loader, image change directory to X-loader then
execute the below commands. This will build the x-loader im-
age as X-loader.bin.
$ cd /home/pusstak/training/toolchain/arm-2009q1/bin/x-
loader
$ make CROSS_COMPILE= arm-none-linux-guneabi-distclean
$ make CROSS_COMPILE= arm-none-linux-guneabi-
omap3beagle_config
$ make CROSS_COMPILE= arm-none-linux-guneabi
To create the MLO file which is used for booting from a
MMC/SD card, sign the x-loader image using the signGP tool.
$./signGP ./x-load.bin

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014 462
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

You will need to copy the signGP tool from the
TI_Android_Utilities/signGP directory to the directory that
contains the x-load.bin file. The signGP tool will create an .ift
file; rename the x-load.bin.ift to MLO.
$ mv x-load.bin.ift MLO

• Boot Loader (U-boot.bin file):
Change directory to u-boot then execute following commands.
Build will generate u-boot.bin file.
$ cd /home/pusstak/training/toolchain/arm-2009q1/bin/u-
boot
$ make CROSS_COMPILE= arm-none-linux-guneabi-distclean
$ make ARCH=arm CROSS_COMPILE= arm-none-linux-
guneabi- omap3beagle_config
$ make ARCH=arm CROSS_COMPILE= arm-none-linux-
guneabi-distclean

• UImage (Kernel):
Execute following commands. This will generate uImage (ker-
nel image) in kernel/arch/arm/boot folder.
$ cd /home/pusstak/training/toolchain/arm-2009q1/bin
/kernel
$ make ARCH=arm CROSS_COMPILE= arm-none-linux-
guneabi-distclean
$ make ARCH=arm CROSS_COMPILE= arm-none-linux-
guneabi-omap3beagle_android_defconfig
$ make ARCH=arm CROSS_COMPILE= arm-none-linux-
guneabi-distclean-uImage

• Root file system:
To build the root file system for Beagle Board execute this
command.
$ make beagleboard-xm= beagleboard OMAPES=5.x –j

After porting android operating system into storage device
(micro SD), the storage device has partioned as shown below
figure 3.

 Fig. 5: Partitioning inside the storage device.
MLO:- Beagle board’s firmware contains a first stage boot-
loader called X-loader. X-loader can also be loaded from SD
card in single file called MLO.
UImage:- It’s a small kernel image with modified header for u-
boot, enabling u-boot to load this kernel image.
Boot.scr:- It is a user defined image file that is read before
loading UImage, allowing the user to supersede the loading of
UImage, preventing the user from recompiling UImage.
U-boot.bin:- Which passes the control to the Linux system. It
retriew kernel from the flash. U-boot boots the Linux kernel.
Finally we develop android application for watching online
video channels and audio player.

3.1 Developing Android Applications for Watching Online
Video Channel and Audio Player

The lifecycle of the Audio Player is not always straight for-
ward and the order in which it takes on various states is best
explained diagrammatically. In Audio player we have used
java language to develop both Audio player and online video
player. Using eclipse the java code has written. Below pro-
gramming flow is for simple Audio player. Once the device is
on after boot animation window we can see list of android
programs in which the audio player is selected thus program
is initialised. Then what all the mp3 files we have selected that
is pushed to beagle board for preparing to play those files.
After preparing it started to play those files that can be listen
through head phones or speakers. While playing, in control
panel if pause button is enabled then the program execution is
delayed until again start button is pressed. In case if user ena-
bled the stop button, then program control goes to prepare for
next mp3 file to play. In other case, if mp3 song is allowed to
complete with full duration, once the song completes the au-
dio player is stopped. A new mp3 is prepared to play and con-
tinues to play until user press play button. The programming
flow for audio player is shown in figure 6.
Similarly, for online video channel Ethernet cable is connected
to beagle board. Then driver for that is initialised when device
is switched on. Then programming flow for watching online
video channel is same as audio player but URL of the selected
channel is considered as playing list rest of the controllings are
same. Only for watching videos but not for downloading vid-
eos while playing. When application is selected the list of
sports channel is listed. Then particular URL is loaded to me-
dia player. The programming flow for watching online video
channels is in figure 7.

 Fig. 6: Programming flow for Audio Player.

MLO
File

U-boot.bin UImage
Kernel

boot.scr Root file
system

 Initialized Preparing

 Prepared

 Started

 Stopped
 Paused

 Completed

 Idle IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014 463
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig. 7: Programming flow for Watching Online Video Chan-
nels.

4 RESULTS

 Fig. 8: Snapshot of Audio Player Application.

Fig. 9: Snapshot of Watching Online Video Channels Applica-
tion.

 Fig. 10: Snapshot of an online sport channel.
 After porting system software and application software such
as Watching Online Video Channel Application and Audio
Player Application on BeagleBoard XM, when development
board is switched on both system software and application
software are loaded from memory card and display acceptable
results. Figure 8 shows Audio player Application in LCD dis-
play. Figure 9 shows Watching Online Video Channels Appli-
cation. Figure10 shows online sport channel after selecting
particular channel in list. It can also enhance it for video play-
er too. Figure 8 shows the Audio Player Application in LCD
display with controlling buttons such as Play, Pause, Stop,
Shuffle, Rewind and Forward. This java code can be contribut-
ed as open source code to the society.

5 CONCLUSION
The proposed system was built and was executed on the

BeagleBoard XM development board successfully with expected
results. We built android operating system and android applica-
tion software for BeagleBoard-xM. We can also improve it for
touch screen devices and also include text to speech converter,
Video conversation, MMS, Google talk, SMS etc… Since we
have used ARM cortex A8 whose operating frequency is 1GHz,
it will be more convenient for user to access all features in single
screen with considerable speed instead of using separate devic-
es. We can also remove unwanted standard interfaces to opti-
mise the area of development board at end product by the
manufacturer according to application needs. In this paper it
can enhance the features to develop android application s/w for
touch screen devices, Instead of using wired USB mouse and
key board.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014 464
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

ACKNOWLEDGMENT
I am very much thankful to Dr. RAMACHANDRA .A .C,
HOD, Electronics and Communication Engineering. I also ex-
press sincere thanks to all faculty members of Department for
the valuable advice and assistance. This project is successfully
carried out under the guidance of VISHWAKIRAN who is
working in Pushkala Technologies Pvt Ltd. I also thank all my
family members and friends for their kind cooperation.

REFERENCES
[1] Kyle Merrifield Mew. “Android 3.0 Application Development

Cookbook”. July 2011. 5-33, 191-209.
[2] Thomas Thurman. “MeeGO 1.0 Mobile Application Develop-

ment Coockbook”. 2012.
[3] Nirav Mehta. “Mobile Web Development”. 2010.
[4] “BeagleBoard-xM System Reference Manual”. Revision C.1.0.

April 4, 2010. 22-31, 33-47, 116-141.
[5] Alan Cox. Video4 Linux Programming [EB/OL]. (2000)[2011-01-

20].alan@redhet.com.
[6] Vivek G Gite. “Linux Shell Scripting Tutorial”. Ver.1.0. Aug

2001. 2-17.
[7] Herbert Schildt. “Java the Complete Reference”. Seventh Edi-

tion.
[8] Liggesmeyer P., Trapp M. Trends in Embedded Software Engi-

neering [J]. IEEE Software, 2009, 26(3):19-25.
[9] Information on: http://android-developers.blogspot.in/
[10] Information on: http://source.android.com/source/ IJSER

http://www.ijser.org/
mailto:.alan@redhet.com
http://android-developers.blogspot.in/

	1 Introduction
	2 Existing Model
	2.1 Problem Defnition

	3 Proposed work
	4 Results
	5 Conclusion
	Acknowledgment
	References

